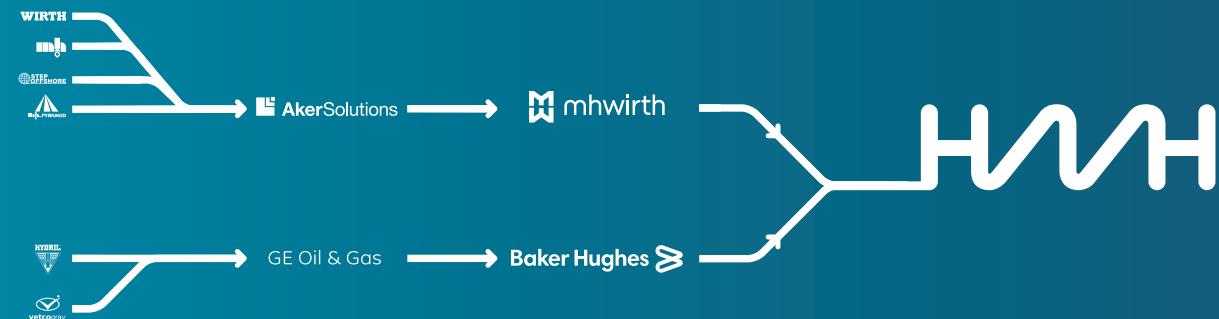


PRESSURE CONTROL
Technical Training Catalog 2026

Content

About HMH	3	Fundamentals/Basic Courses	Hydraulics/Mechanical Courses
		Introduction to Capital Drilling Equipment	GEN2 MUX Control System Hydraulics
HMH Training	4	Introduction to Fluid Symbols	18
		GEN2 MUX Control System Fundamentals	GEN2 MUX Pod Maintenance
General Information		SeaONYX® Control System Fundamentals	19
Course Language	5		Annular BOP Maintenance
Course Delivery Models	5		20
JFK Learning Center	5		Ram BOP Maintenance
Dress Code	5		21
Enrollment Terms & Conditions	6		Wellhead Connector Maintenance
Tuition & Course Details	7	Electrical/Software Courses	22
		GEN2 MUX Control System Electronics	Diverter Maintenance
		GEN2 MUX Control System Troubleshooting	23
		SeaONYX® Control System Electronics	Riser System Maintenance
		SeaONYX® Control System Software Operator	24
		SeaLytics™ Software Operator	Land BOP Maintenance
Calendar	8		25
			SeaPrime™ Pod Hydraulics
			26

About HMH


A Premier Drillings Solution Provider

HMH is a global leader in delivering innovative, integrated solutions across land, offshore, and emerging energy markets. Renowned for our pioneering pressure control technologies and trusted drilling equipment, we empower operators worldwide to meet the industry's evolving demands.

With decades of engineering expertise and a legacy shaped by innovation, safety, and efficiency, HMH offers mission-critical equipment, advanced digital systems, and expert services designed for lasting performance and customer success. Our commitment goes beyond technology—we invest in people and continuous improvement, believing operational excellence starts with ongoing learning and development.

By choosing HMH, you gain a partner dedicated to empowering your teams—not just through world-class solutions, but also through comprehensive training and support. Explore what comes next to see how HMH can equip your workforce for a safer, smarter energy future.

A Legacy of Excellence Since 1895

HMH Experience

50+ Years

Delivering
Offshore Equipment

130+ Years

Delivering
Onshore Equipment

50+ Years

Delivering
Construction Equipment

50+ Years

Delivering
Mining Equipment

HMH Global Network

HMH Training

Building Competence, Ensuring Safety

Our programs are designed by industry veterans and grounded in real-world experience—ensuring practical, safety-first learning that goes far beyond theory. We deliver hands-on instruction aligned with the latest standards, empowering your teams to operate with confidence, minimize downtime, and maintain the highest levels of safety and efficiency.

What Sets Us Apart

Expert Instruction

Courses created and delivered by professionals with proven field experience.

Hands-On Learning

Practical, simulator-based, and classroom training for all skill levels.

Safety-First Approach

Programs built around HMH's strong safety culture and best practices.

Tailored Solutions

Flexible courses adapted to your unique operations and workforce needs.

Our Commitment to Quality

HMH training is built on a strong pedagogical foundation and refined over years of experience. Our expert instructors collaborate with you to understand your goals and deliver training that truly makes a difference. Whether your team is just starting out or pursuing advanced certification, HMH equips them with the knowledge and skills to ensure maximum safety and peak performance.

General Information

Course Language

The standard spoken language in all our courses is English.

Course Delivery Models

Classroom Model

- Lectures are conducted in person at the JFK Learning Center.
- Learners can only attend in person.
- All attendees participate in self-guided and/or group learning activities.
- All attendees participate in practical, hands-on exercises (e.g., assembly, disassembly, etc.) when applicable.
- All attendees will receive a certificate of attendance.

Virtual Model

- Learners can only attend remotely.
- Lectures are conducted remotely via Microsoft Teams.
- Learners participate in self-guided activities (e.g., tracing schematic circuits, reviewing documentation, etc.).
- All attendees will receive a certificate of attendance.

JFK Learning Center

Hours of Operation

Classes are conducted from 8:00AM to 5:00PM Central Standard Time (CST).

Classrooms

Our classrooms are fully equipped with modern technology to ensure the best technical understanding for the course participants. We have projectors in each classroom and use whiteboards to illustrate equipment and to show animations, pictures, and videos. Lunch and refreshments are included in the classroom tuition rate. Travel and accommodation expenses are not included in our prices.

Dress Code

Learning Center Classroom

To maintain a professional atmosphere and adhere to the safety standards, personnel attending classes will be required to wear long pants and shirts with short or long sleeves. Shorts, tank-tops, sandals, flip-flops, or any open-toed shoes are not allowed at our training facilities.

Technical Training Lab

Where specified in this catalog, attendees are required to provide steel-toe boots and work clothes. We provide eye and hand protection for training performed in our shop area and Training Systems Lab.

General Information

Enrollment Terms & Conditions

Registration

Participants must sign up for the course at least three (3) weeks prior to the course start date. HMH reserves the right to cancel a course if less than six (6) participants have signed up two (2) weeks prior to the course start date.

For enrollment and information email:
julie.baardsen@hmhw.com

Tuition and Billing

- Purchase order is required before enrollment will be confirmed.
- The tuition rates in this catalog only apply to standard courses delivered at the JFK Learning Center.
- All rig/customer-specific courses have a five (5) student minimum tuition charge.
- Rig/customer-specific versions of some courses can be developed and delivered at additional cost.
- Off-site training delivery will include instructor travel and accommodation expenses plus 15%.

Cancellation

Cancellation by buyer less than two (2) weeks before scheduled course date will be charged one hundred percent (100%) of the fee.

Tuition & Course Details

Course Offerings	Course Abbreviation Code	Maximum Students	Classroom		Catalog Page
			Class Days	Tuition (UDS per person)	
Fundamentals/Basic Courses					
Introduction to Capital Drilling Equipment	-	12	2	\$2,760	9
Introduction to Fluid Symbols	-	12	2	\$2,760	10
GEN2 MUX Control System Fundamentals	MCSF	12	3	\$2,900	11
SeaONYX® Control System Fundamentals	SCSF	12	2	\$2,760	12
Electronics/Software					
GEN2 MUX Control System Electronics	MCSE	8	5	\$5,450	13
GEN2 MUX Control System Troubleshooting	MCST	8	4	\$5,820	14
SeaONYX® Control System Electronics	SCSE	8	3	\$3,280	15
SeaONYX® Control System Software Operator	SCSO	10	1	\$1,380	16
SeaLytics™ Software Operator	SYLO	10	1	\$1,380	17
Hydraulics/Mechanical					
GEN2 MUX Control System Hydraulics	-	10	5	\$5,450	18
GEN2 MUX Pod Maintenance	-	8	4	\$5,820	19
Annular BOP Maintenance	ABOP	8	1	\$1,380	20
Ram BOP Maintenance	RBOP	8	2	\$2,760	21
Wellhead Connector Maintenance	WHC	8	1	\$1,380	22
Diverter Maintenance	DIV	10	½	\$710	23
Riser System Maintenance	-	10	1	\$1,380	24
Land BOP Maintenance	-	8	3	\$4,130	25
SeaPrime™ Pod Hydraulics	-	10	2	\$2,180	26

PC Technical Training Calender | 2026

2026	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr		
JAN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
FEB		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28			
MAR		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
APR			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
MAY	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
JUN		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
JUL		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
AUG		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
SEP		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
OCT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
NOV		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
DEC		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Fundamentals/Basic Courses

Introduction to Capital Drilling Equipment

Course Goal

This course provides participants with a foundational understanding of the purpose, equipment, and general operation of the Capital Drilling Equipment (CDE) product line, enhancing their theoretical knowledge of its functions and applications.

Course Topics

- HSSE
- Functional description of the equipment
- Equipment identification
- Operational description of the equipment

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the purpose of the CDE product line.
- Identify the individual equipment in the CDE product line.
- Describe the equipment's purpose and operation in drilling and well control operation.
- Describe the overall operation of the CDE product line.

Target Group

Personnel who have direct or indirect roles in drilling systems and are unfamiliar with the CDE product line.

Prerequisite Skill and Knowledge

No prior skill or knowledge is required.

Course Capacity

Maximum number of participants is 12.

Course Duration

2 Days Classroom

Fundamentals/Basic Courses

Introduction to Fluid Symbols

Course Goal

This course provides participants with a foundational understanding of ANSI and ISO hydraulic symbols, focusing on standards, symbol identification, and schematic interpretation.

Course Topics

- HSSE
- Standards for hydraulic symbols
- Hydraulic symbol identification
- Hydraulic schematic interpretation

Course Objectives

Upon completion of the course, participants will be able to:

- Identify the types of lines and shapes used on hydraulic schematics.
- Identify the hydraulic components represented by the symbols covered in the course content.
- Interpret hydraulic schematic drawings.
- Describe basic hydraulic circuit operation based on schematic interpretation.

Target Group

Personnel who are unfamiliar with the interpretation of hydraulic symbols and schematics.

Prerequisite Skill and Knowledge

No prior skill or knowledge is required.

Course Capacity

Maximum number of participants is 12.

Course Duration

2 Days Classroom

Fundamentals/Basic Courses

GEN2 MUX Control System Fundamentals

Course Goal

This course provides participants with a fundamental understanding of the GEN2 MUX BOP Control System, including its components, their purpose and operation, and the overall system functionality.

Course Topics

- HSSE
- Functional description of the system
- System component identification
- Operational description of the system

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the purpose of the MUX BOP Stack.
- Describe the purpose of the MUX BOP Control System.
- Identify the individual equipment in the MUX BOP Control System and BOP Stack.
- Describe the equipment's purpose and operation in the MUX BOP Control System.
- Describe the overall operation of the MUX BOP Control System

Target Group

Personnel unfamiliar with the GEN2 MUX BOP control system or assigned to a rig where a MUX control system is installed.

Prerequisite Skill and Knowledge

No prior skill or knowledge is required.

Course Capacity

Maximum number of participants is 12.

Course Duration

3 Days Classroom

Fundamentals/Basic Courses

SeaONYX® Control System Fundamentals

Course Goal

This course provides participants with a fundamental understanding of the SeaONYX® BOP Control System, including its components, their purpose and operation, and the overall system functionality.

Course Topics

- HSSE
- Functional description of the system
- System component identification
- Operational description of the system

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the purpose of the BOP Stack.
- Describe the purpose of the SeaONYX® BOP Control System.
- Identify the major components of the SeaONYX® BOP Control System.
- Describe the equipment's purpose and operation in the SeaONYX® BOP Control System.
- Describe the overall operation of the SeaONYX® BOP Control System.

Target Group

Personnel new to the SeaONYX® BOP Control System or assigned to a rig where a SeaONYX® BOP Control System is installed.

Prerequisite Skill and Knowledge

No prior skill or knowledge is required.

Course Capacity

Maximum number of participants is 12.

Course Duration

2 Days Classroom

Electrical/Software Courses

GEN2 MUX Control System Electronics

Course Goal

This course provides participants with an in-depth understanding of the operation and maintenance of the electric power and communication equipment within the GEN2 MUX BOP Control System, focusing on its theoretical operation and functionality.

Course Topics

- HSSE
- MUX Control System Electrical Overview
- Electrical Symbols
- System Schematics:
 - Subsea Electronics Module Electrical Safety
 - Electrical Measurement Tools

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the flow of electric power through the surface and subsea equipment.
- Describe the electrical operation of the equipment.
- Describe the flow of electronic communication through the surface and subsea equipment.
- Trace individual electric power and communication circuits for troubleshooting purposes.

Target Group

Personnel responsible for troubleshooting and maintaining GEN2 MUX Control System and BOP stack electrical equipment

Prerequisite Skill and Knowledge

This course requires a fundamental understanding of electrical power theory and electronic communications, and the components typically used in these systems. Attendees need to be familiar with the standard symbology used in electrical schematics. GEN2 MUX Control System Fundamentals is a recommended prerequisite.

Personal Protection Equipment

Eye protection is provided when required.

Course Capacity

Maximum number of participants is 8.

Course Duration

5 Days Classroom

Electrical/Software Courses

GEN2 MUX Control System Troubleshooting

Course Goal

This course provides participants with practical, hands-on experience applying systematic troubleshooting methods to identify, isolate, and correct faults in the electric power and communication sub-systems of the MUX BOP Control System.

Course Topics

- HSSE
- System Components and Schematics Review
- Troubleshooting Methodology
- Hardware/HMI Identification
- Baseline System Operation
- System Power Fault Identification and Resolution Exercises
- System Communication Fault Identification and Resolution Exercises
- Ground Fault Troubleshooting and Resolution Exercises

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the normal operation of the MUX Control System.
- Identify power and communication fault conditions using software HMIs and hardware indications.

- Use interpretation of schematics and diagnostic testing of power and communication signals to isolate faults.
- Resolve faults to restore the system to normal operation.

Target Group

Personnel responsible for troubleshooting and maintaining the electronic equipment of the MUX BOP Control System.

Prerequisite Skill and Knowledge

Attendees need to be familiar with the standard symbology used in electrical schematics. Experience using basic electrical measurement tools (e.g., multi-meter) to troubleshoot electrical power and electronic communication systems is highly recommended. GEN2 MUX Control System Fundamentals is a recommended prerequisite. **GEN2 MUX Control System Electronics is a required prerequisite.**

Personal Protection Equipment

Eye protection is provided when required.

Course Capacity

Maximum number of participants is 8.

Course Duration

4 Days Classroom and Practical

Electrical/Software Courses

SeaONYX® Control System Electronics

Course Goal

This course provides participants with an in-depth understanding of the operation and maintenance of the electric power and communication equipment within the SeaONYX® BOP Control System, focusing on its theoretical operation and functionality.

Course Topics

- HSSE
- SeaONYX® Control System Electrical Overview
- Scope of Supply Schematic
- Electrical Symbols
- System Interconnect Schematic
- System Cabling Block Diagram
- Electrical Safety
- Electrical Measurement Tools
- Power Distribution Schematics
- Surface Communication Equipment Schematics

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the flow of electric power through the surface and subsea equipment.
- Describe the electrical operation of the equipment.
- Describe the flow of electronic communication through the surface and subsea equipment.
- Trace individual electric power and communication circuits for troubleshooting purposes.

Target Group

Personnel responsible for troubleshooting and maintaining the electronic equipment of the SeaONYX® BOP Control System.

Prerequisite Skill and Knowledge

This course requires a basic understanding of electrical power theory, electronic communications, and the components typically used in these systems. Attendees should be familiar with standard symbology in electrical schematics. SeaONYX® Control System Fundamentals is a recommended prerequisite.

Course Capacity

Maximum number of participants is 8.

Course Duration

3 Days Classroom

Electrical/Software Courses

SeaONYX® Control System Software Operator

Course Goal

This course provides participants with an in-depth understanding of the SeaONYX® control system's software applications and their operation, focusing on theoretical principles and functionality.

Course Topics

- HSSE
- Functional description of the control system software
- Identification of the software operator screen controls
- Interpretation of software screen data and information

Course Objectives

Upon completion of the course, participants will be able to:

- Identify the CDP operator screens.
- Describe the purpose of each screen and the data displayed.
- Perform troubleshooting and diagnostic tasks using CDP operator screens.

Target Group

Personnel responsible for troubleshooting and maintaining the BOP Control System and BOP stack electrical equipment OR utilizing the control system to control the BOP stack.

Prerequisite Skill and Knowledge

SeaONYX® Control System Fundamentals is a recommended prerequisite.

Personal Protection Equipment

No personal protection equipment is required.

Course Capacity

Maximum number of participants is 10.

Course Duration

1 Day Classroom

Electrical/Software Courses

SeaLytics™ Software Operator

Course Goal

This course provides participants with an in-depth understanding of the SeaLytics™ real-time data monitoring system's software applications and their operation, focusing on theoretical principles and functionality.

Course Topics

- HSSE
- Functional description of the control system software
- Identification of the software operator screens
- Interpretation of software screen data and information

Course Objectives

Upon completion of the course, participants will be able to:

- Identify the SeaLytics™ operator screens.
- Describe the purpose of each screen and the data displayed.
- Perform typical operator tasks (e.g., trending, data transfer, troubleshooting, diagnostics)

Target Group

Personnel responsible for troubleshooting and maintaining the BOP Control System and BOP stack electrical equipment OR utilizing the control system to control the BOP stack.

Prerequisite Skill and Knowledge

SeaONYX® Control System Fundamentals and SeaLytics™ Real-Time Data Monitoring are recommended prerequisites.

Personal Protection Equipment

No personal protection equipment is required.

Course Capacity

Maximum number of participants is 10.

Course Duration

1 Day Classroom

Hydraulics/Mechanical Courses

GEN2 MUX Control System Hydraulics

Course Goal

This course provides participants with an in-depth understanding of the operation of surface and subsea hydraulic equipment and circuits within the GEN2 MUX BOP Control System, focusing on theoretical principles and functionality.

Course Topics

- HSSE
- Functional description of the hydraulics system
- Interpretation of hydraulic system schematics
- Operational description of the hydraulic circuits in the system

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the flow of hydraulic power through the surface and subsea equipment.
- Describe the hydraulic operation of the equipment.
- Describe the relationship between various hydraulic components and the control system software screens.
- Trace individual hydraulic circuits for troubleshooting purposes.

Target Group

Personnel responsible for troubleshooting and maintaining the GEN2 MUX Control System and BOP stack hydraulic equipment.

Prerequisite Skill and Knowledge

This course requires a fundamental understanding of hydraulic power theory and the components typically used in hydraulic power systems. Attendees need to be familiar with the standard symbology used in hydraulic schematics and have a basic understanding of the surface and subsea BOP control system operation. GEN2 MUX Control System Fundamentals is a recommended prerequisite.

Course Capacity

Maximum number of participants is 10.

Course Duration

5 Days Classroom

Hydraulics/Mechanical Courses

GEN2 MUX Pod Maintenance

Course Goal

This course provides participants with an in-depth understanding of the operation of GEN2 MUX Control Pod equipment and offers practical experience performing maintenance tasks on its components.

Course Topics

- HSSE
- MUX Pod Operation and Component Overview
- MUX Pod Schematic Review
- Electro-Hydraulic and Lower Valve Control Units Components
- Pod Wedge Packers

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the components of the MUX Pod and their operation.
- Trace hydraulic flow and explain MUX Pod operation using the hydraulic schematic.
- Disassemble, visually inspect, and assemble a shear seal valve.
- Test the solenoid/shear seal valve operation.
- Disassemble, visually inspect, and assemble a SPM valve.
- Disassemble, visually inspect, and assemble a pod regulator.
- Replace the packer seals in the MUX Pod wedge.
- Test hydraulic pressure of the one atmosphere housing seals.

Target Group

Personnel responsible for troubleshooting and maintaining the GEN2 MUX BOP Control Pod

Prerequisite Skill and Knowledge

GEN2 MUX Control System Fundamentals and/or SeaONYX® Control System Fundamentals are recommended prerequisites.

Personal Protection Equipment

Work clothes and steel toe shoes are required to attend the classroom version of this course. Eye and hand protection are provided by HMH.

Course Capacity

Maximum number of participants is 8.

Course Duration

4 Days Classroom

Hydraulics/Mechanical Courses

Annular BOP Maintenance

Course Goal

This course provides participants with an in-depth understanding of the operation of annular blowout prevention (BOP) equipment and offers practical experience performing maintenance tasks on its components.

Course Topics

- HSSE
- Annular BOP Model Types
- Annular BOP Applications
- Annular BOP Maintenance Procedures
- Annular BOP Maintenance Practical Exercises

Course Objectives

Upon completion of the course, participants will be able to:

- Identify the various model types of annular BOPs.
- Describe the purpose and function of each type of annular BOP.
- Identify the component part of the annular BOP.
- Calculate the appropriate accumulator pre-charge pressures for subsea annular BOP operation.
- Describe the ideal storage conditions for rubber goods.
- Describe the maintenance procedures for annular BOPs.
- Disassemble, visually inspect, and assemble a GX annular BOP.

Target Group

Personnel responsible for troubleshooting and maintaining annular blowout preventers (BOPs)

Prerequisite Skill and Knowledge

GEN2 MUX Control System Fundamentals and/or SeaONYX® Control System Fundamentals are recommended prerequisites.

Personal Protection Equipment

Work clothes and steel toe shoes are required to attend the classroom version of this course. Eye and hand protection are provided by HMH.

Course Capacity

Maximum number of participants is 8.

Course Duration

1 Day Classroom and Practical

Hydraulics/Mechanical Courses

Ram BOP Maintenance

Course Goal

This course provides participants with an in-depth understanding of the operation of compact ram blowout prevention (BOP) equipment and offers practical experience performing maintenance tasks on its components.

Course Topics

- HSSE
- Compact Ram BOP Body
- Compact Ram BOP Bonnets and Multiple Position Lock (MPL)
- Compact Ram BOP Blocks
- Compact Ram BOP Maintenance Procedures
- Compact Ram BOP Maintenance Practical Exercises

Course Objectives

Upon completion of the course, participants will be able to:

- Identify the various models of Ram BOPs.
- Describe the purpose and function of the compact Ram BOP.
- Identify the component part of the compact Ram BOP.
- Describe the ideal storage conditions for rubber goods.
- Describe the maintenance procedures for compact Ram BOPs.
- Disassemble, visually inspect, and assemble a compact Ram BOP bonnet.
- Visually inspect a compact Ram BOP body.

- Disassemble, visually inspect, and assemble a 3K and 5K multiple position lock (MPL).
- Remove, visually inspect, and install a compact Ram seal seat.
- Remove, visually inspect, and install a compact Ram wear plate.
- Remove, visually inspect, and install a compact Ram SSTV seal seat/wear plate.

Target Group

Personnel responsible for troubleshooting and maintaining Compact Ram blowout preventers.

Prerequisite Skill and Knowledge

GEN2 MUX Control System Fundamentals and/or SeaONYX® Control System Fundamentals are recommended prerequisites.

Personal Protection Equipment

Work clothes and steel toe shoes are required to attend the classroom version of this course. Eye and hand protection are provided by HMH.

Course Capacity

Maximum number of participants is 8.

Course Duration

2 Days. 1 Day Classroom and 1 Day Practical

Hydraulics/Mechanical Courses

Wellhead Connector Maintenance

Course Goal

This course provides participants with an in-depth understanding of the operation of the H4 wellhead connector and offers practical experience performing maintenance tasks on its components.

Course Topics

- HSSE
- H4 Wellhead Connector Operation
- H4 Wellhead Connector Maintenance Procedures
- H4 Wellhead Connector Maintenance Practical Exercises

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the purpose and function of the H4 wellhead connector
- Identify the component parts of the H4 wellhead connector
- Describe the specification and application of each model of H4 wellhead connector
- Describe the ideal storage conditions for rubber goods.
- Describe the maintenance procedures for the H4 wellhead connector.
- Disassembly, visually inspect, and assemble a CxE H4 wellhead connector.

Target Group

Personnel responsible for troubleshooting and maintaining Wellhead Connectors.

Prerequisite Skill and Knowledge

GEN2 MUX Control System Fundamentals and/or SeaONYX® Control System Fundamentals are recommended prerequisites.

Personal Protection Equipment

Work clothes and steel toe shoes are required to attend the classroom version of this course. Eye and hand protection are provided by HMH.

Course Capacity

Maximum number of participants is 8.

Course Duration

1 Day Classroom and Practical

Hydraulics/Mechanical Courses

Divertor Maintenance

Course Goal

This course provides participants with an in-depth understanding of the operation of diverter equipment and offers practical experience performing maintenance tasks on its components.

Course Topics

- HSSE
- KFDS Diverters
- MSP Diverters
- Divertor Maintenance Procedures

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the purpose and function of the diverter.
- Identify the component parts of each model of diverter.
- Describe the ideal storage conditions for rubber goods.
- Describe the maintenance procedures for KFDS diverters.
- Describe the maintenance procedures for MSP diverters.

Target Group

Personnel responsible for troubleshooting and maintaining diverters.

Prerequisite Skill and Knowledge

GEN2 MUX Control System Fundamentals and/or SeaONYX® Control System Fundamentals are recommended prerequisites.

Personal Protection Equipment

Work clothes and steel toe shoes are required to attend the classroom version of this course. Eye and hand protection are provided by HMH.

Course Capacity

Maximum number of participants is 10.

Course Duration

½ Day Classroom

Hydraulics/Mechanical Courses

Riser System Maintenance

Course Goal

This course provides participants with an in-depth understanding of the operation of riser system equipment and offers practical experience performing maintenance tasks on its components.

Course Topics

- HSSE
- Riser System Overview
- Diverter
- Riser Running Equipment
- Flex Joints & Riser Adapter
- Riser Joints
- Gas Handler
- Telescopic Joint
- Tension Ring
- Rubber Goods

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the function and operation of the equipment.
- Identify the component parts of each piece of equipment.
- Describe the maintenance and inspection procedures for each piece of equipment
- Describe the hydraulic operation of the equipment.
- Describe the principle of storage and handling of rubber goods.

Target Group

Personnel responsible for troubleshooting and maintaining the riser and associated equipment.

Prerequisite Skill and Knowledge

GEN2 MUX Control System Fundamentals and/or SeaONYX® Control System Fundamentals are recommended prerequisites.

Course Capacity

Maximum number of participants is 10.

Course Duration

1 Day Classroom

Hydraulics/Mechanical Courses

Land BOP Maintenance

Course Goal

This course provides participants with an in-depth understanding of the operation of land-based annular and ram blowout prevention (BOP) equipment and offers practical experience performing maintenance tasks on its components.

Course Topics

- HSSE
- GK Annular BOP Maintenance
- GX Annular BOP Maintenance
- MSP Annular BOP Maintenance
- Sentry Ram BOP Maintenance
- Conventional Ram BOP Maintenance

Course Objectives

Upon completion of the course, participants will be able to:

- Identify the components of the equipment.
- Describe the operation of the equipment.
- Describe the seal pressure testing procedure for each piece of equipment.
- Disassemble, visually inspect, and assemble a GK annular BOP.
- Disassemble, visually inspect, and assemble a Sentry Ram.
- Disassemble, visually inspect, and assemble a Compact Ram bonnet.

Target Group

Personnel responsible for troubleshooting and maintaining annular and ram BOPs in land-based drilling applications

Prerequisite Skill and Knowledge

There are no prerequisites for this course.

Personal Protection Equipment

Work clothes and steel toe shoes are required to attend the classroom version of this course. Eye and hand protection are provided by HMH.

Course Capacity

Maximum number of participants is 10.

Course Duration

3 Days Classroom

Hydraulics/Mechanical Courses

SeaPrime™ Pod Hydraulics

Course Goal

This course provides participants with an in-depth understanding of the operation of hydraulic circuits and equipment within the SeaPrime™ Control Pod, focusing on theoretical principles and functionality.

Course Topics

- HSSE
- Functional description of the hydraulics system
- Interpretation of hydraulic system schematics
- Operational description of the hydraulic circuits in the system

Course Objectives

Upon completion of the course, participants will be able to:

- Describe the purpose of the SeaPrime™ control pod.
- Identify the major components of the SeaPrime™ control pod.
- Describe the overall operation of the SeaPrime™ control pod.
- Describe the flow of hydraulic power through the SeaPrime™ control pod.
- Describe the hydraulic operation of the equipment.
- Trace individual hydraulic power circuits for troubleshooting purposes.

Target Group

Personnel responsible for troubleshooting and maintaining the SeaPrime™ Control Pod and BOP stack hydraulic equipment.

Prerequisite Skill and Knowledge

This course requires a fundamental understanding of hydraulic power theory and the components typically used in hydraulic power systems. Attendees need to be familiar with the standard symbology used in hydraulic schematics and have a basic understanding of the surface and subsea BOP control system operation. GEN2 MUX Control System Fundamentals and/or SeaONYX® Control System Fundamentals are recommended prerequisites.

Course Capacity

Maximum number of participants is 10.

Course Duration

2 Days Classroom

Thank you for choosing us.

For any questions please contact julie.baardsen@hmhw.com